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Approximate Approaches for Nuclear Weak Interaction Rates in Astrophysics 

Benjamin M. Anderson 

 

Nuclear weak interactions, like beta decay, are important inputs for modeling astrophysical 

explosions. In the allowed approximation, these processes proceed as Fermi or Gamow Teller (GT) 

processes where the spins of the electron and neutrino are anti-parallel or parallel, respectively. In 

the GT case, transition probability is spread over many final states in the daughter nucleus, with 

each probability determination requiring numerical integration of the available phase space. 

Developing a fast and accurate method for calculating each contribution to the total decay rate 

would provide reliable weak rate libraries for astrophysical modelers. The phase space integrand 

includes the classical statistical factor, a Coulomb correction, and the Fermi Dirac distribution of 

continuum electrons in the stellar material. In this paper, we specifically examine the phase space 

integration and discuss various approximations to the Coulomb correction, comparing 

computational speed and numerical accuracy. An approximate approach that is fast and accurate is 

introduced. 
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I. INTRODUCTION 

An open question in cosmology is what processes are responsible for the creation of elements 

heavier than iron. The fusion of lighter elements, such as hydrogen into helium like in the Sun, 

releases energy up to the silicon-silicon fusion process, but fusion producing elements heavier than 

iron requires tremendous outside energy input in order to occur. This means explosive astrophysical 

conditions must somehow be necessary to explain the existence of heavy elements such as gold, 

thorium or uranium.  

Events like supernova explosions and neutron star mergers are leading candidates for the sites 

of the processes that create heavy elements (see Hitt, 2016 and references therein). Such events have 

in common a progenitor body made of an exotic state of matter, for example a white dwarf star or a 

neutron star, where electrons are packed in its plasma at ultra-high densities. This state is called 

“electron-degenerate”; a state where the same quantum mechanical forces that prevent two electrons 

from occupying the same orbit in the atom now prevent the body from collapsing under its own 

gravity. Under these conditions, nuclear beta decays, which create or destroy electrons, can proceed 

at rates that are many orders of magnitude different than in a terrestrial lab experiment. Therefore, 

among many other inputs, it is important to determine reliable estimates of nuclear beta decay rates 

that reflect the changes caused by the stellar environment. 

Beta decay is a form of radioactive decay. In this process, an atomic nucleus releases a neutrino 

and either absorbs or emits an electron or its anti-particle, a positron. Beta decay is caused by the 

nuclear weak force, a fundamental interaction between sub-atomic particles. In this paper, we will 

focus on the electron emitting kind of beta decay and refer to it simply as “beta decay” hereafter, but 

the results below can be extended to the other three versions of the decay. The emitted electron e- 

and neutrino  are produced by the process represented in the following equation 
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 𝑍
𝐴𝑋𝑁 → 𝑋′𝑍+1

𝐴 + ⅇ− + 𝑣̅                                                   (1) 

where X is the chemical symbol of the initial nucleus and X’ that of the final nucleus, each having 

mass number A and charges Z and Z+1, respectively. The energy released in the process is 

determined by the mass difference  

𝑄𝛽− = [𝑚𝑁( 𝑍
𝐴𝑋) − 𝑚𝑁( 𝑍+1

𝐴 𝑋′) − 𝑚𝑒]𝑐2                                     (2) 

Both the electron and the neutrino share this energy, so 

𝑄𝛽− = 𝑇𝑒 + 𝐸𝑣̅                                                           (3) 

However, as the sharing is not constrained by a conservation law, the kinetic energy of the 

emitted electron Te is distributed over a range of possible values between 0 and 𝑄𝛽− . This fact is 

critical for determining how the electron-degenerate conditions in the stellar environment will 

modify the decay rate.  

I now review how the rate of the decay  and the shape of the distribution of Te are related in 

the classic Fermi Theory of Beta Decay, following (Krane, 2005). The rate of decay can be calculated 

using Fermi’s golden rule, which assumes the decay process is weak: 

𝜆 =
2𝜋

ℏ
|𝑉𝑗𝑖|

2
𝜌(𝐸𝑗)                                                        (4) 

where Vji is the matrix element that represents the integration of the interaction strength V across 

the initial i and final j nuclear wavefunctions  i,j. 

𝑉𝑗𝑖 = ∫ 𝜓𝑗
∗𝑉𝜓𝑖 ⅆ𝑣                                                         (5) 

Determining Vji is a complicated nuclear structure problem, but is not necessary for our purposes 

and is beyond the scope of this project. It is sufficient to point out that the number of j-i 

combinations is extremely large for most nuclei (~104 to 108), each having its own unique Q = Qij, so 
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the determination of (Ej) and of the contribution ij to the total rate  must also be computed 

equally many times. 

In Fermi’s golden rule, (Ej) represents the density of the continuum (free) states which must 

have openings to accept new electrons if the decay process is to proceed. In the lab environment, 

nearly all continuum states are open and in the stellar environment, these states are rapidly filled and 

closed with increasing matter density. When filled continuum states prevent the creation of new 

decay electrons, the phenomenon is called “Pauli blocking”.  

The number density of continuum electron states can determined by using spherical 

coordinates to cancel out the volume that the emitted electron is confined to, assuming that the 

electron is confined to volume V. The resulting relationship is 

ⅆ𝑛𝑒 =
4𝜋𝑝2 ⅆ𝑝 𝑉

ℎ3                                                                (6) 

where p is the electron momentum and h is Planck’s constant, making the result dimensionless. 

Likewise, the number density of continuum neutrino states of neutrino momentum q is 

ⅆ𝑛𝑣 =
4𝜋𝑞2 ⅆ𝑞 𝑉

ℎ3                                                                (7) 

To determine the momentum and energy distributions, it is necessary to use the partial decay rate 

form of Fermi’s golden rule for emitted electrons and neutrinos with proper momenta  

ⅆ𝜆 =
2𝜋

ℏ
𝑔2|𝑀𝑓𝑖|

2
(4𝜋)2 𝑝2 ⅆ𝑝 𝑞2

ℎ6

ⅆ𝑞

ⅆ𝐸𝑗
                                               (8) 

Here, all variables that are not dependent upon momentum can be represented by a constant, C and 

need not be considered further. We then obtain a distribution that gives the number of electrons 

present within a range of momentum from 𝑝 to 𝑝+ ⅆ𝑝: 

𝑁(𝑝) ⅆ𝑝 = 𝐶𝑝2𝑞2 ⅆ𝑝                                                       (9) 
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Since Q = Te + E and E = p2/2m, we can rewrite the above entirely in terms of electron moment p, 

electron kinetic energy Te and the energy release Q. 

𝑁(𝑝) =
𝐶

𝑐2 𝑝2(𝑄 − 𝑇𝑒)2                                                  (10) 

where c is the speed of light. Written entirely in terms of electron kinetic energy Te 

𝑁(𝑇𝑒) =
𝐶

𝑐5
(𝑇𝑒

2 + 2𝑇𝑒𝑚𝑒𝑐2)1 2⁄ (𝑄 − 𝑇𝑒)2(𝑇𝑒 + 𝑚𝑒𝑐2)                          (11) 

We now have the shape of the distribution we sought, shown in Fig.1.1. Clearly, the function 

goes to 0 at Te = 0 and at Te = Q as expected from the equation, and peaks at about Q/3. This 

means the electron kinetic energy is most likely Q/3 in a decay, but can be as low as 0 or as high as 

Q.  

 

 

Figure 1.1: The distribution of electron kinetic energy with Q set equal to 2.0 MeV.[1] 

To determine the decay rate, ordinarily, one must integrate the distribution in Fig. 1.1, finding 

the area under the curve, which is the total probability 

𝑓𝑖𝑗 = ∫ 𝑁(𝑇𝑒 , 𝑄𝑖𝑗) ⅆ𝑇𝑒                                               (12) 
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However, for astrophysics, one must modify the distribution shape to account for electrical 

interaction with the daughter nucleus (the “Coulomb correction”), modify the distribution shape 

again, to account for Pauli blocking by electrons already present in the stellar matter, then integrate 

over Te, finding the area under the curve in the resulting distribution. 

The decay rates in these conditions can be calculated in several ways and, if done quickly, it has 

potential to save large amounts of CPU time that astrophysicists can then repurpose to other 

problems in their computer models. For the remainder of the paper, an approximate approach for 

modifying and integrating the appropriate electron energy distribution, one that is fast and accurate, 

will be explored. In Section II, I will follow the formalism for the modification process for the 

electron energy distribution as laid out by Fuller, Fowler, and Newman (FFN) (Fuller, 1980). The 

calculation involves the integral of the complex gamma function , which is the most expensive 

calculation in terms of CPU time. An effective term can be found inside the integral, which in 

Section III, I will show makes a useful approximation that speeds up the calculation while sacrificing 

little accuracy. In Section IV, I will draw conclusions and outline future work.  

II. METHODOLOGY 

The total decay rate  is defined by FFN by double sum over contributions from all i-j 

combinations, 

𝜆 = ∑ ln [
2 𝑓𝑖𝑗(𝑇,𝜌,𝑈𝐹)

(𝑓𝑡 )𝑖𝑗
]

𝑖𝑗

                                                (13) 

which contains two important terms. The first is the comparative half-life formula ftij, which 

involves the nuclear structure input Vji with which we are not concerned. Our concern is the second 

term, the total probability or “phase space” integral 
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𝑓𝑖𝑗 = ∫ 𝑤2(𝑞𝑛,𝑖𝑗 − 𝑤)
2

𝐺(𝑤, ±𝑍)(1 − 𝑆±) ⅆ𝜔
𝑞𝑛

1

                          (14) 

where FFN has made three important changes relative to the discussion in Section I of this paper. 

First, there is a change of variables from (Te, Qij) to (w, qn,ij) where w = Te/mec
2 and qn,ij = Qij/mec

2, 

made for convenience. Second, the Coulomb correction G(w, Z) discussed earlier, is here 

introduced. Third and most importantly, the term (1 – S ) which models the effect of the stellar 

conditions is introduced. The integrand of fij in this form represents the density of states available in 

the continuum of the stellar matter for a new electron from a decay to occupy. 

I briefly describe each of the three factors. The classical term in the phase space integral 

designates the border of the energy forbidden region outside 0 < Te < Q and so enforces energy 

conservation. 

𝑃(𝑤, 𝑞) = 𝑤2(𝑞𝑛 − 𝑤)2                                                    (15) 

The term containing the Fermi-Dirac distribution, S- for electron emission,  

𝑆− = (exp (
𝑈−𝑈𝐹

𝑘𝑇
) + 1)

−1
                                                  (16) 

limits the number of continuum states available at energies lower than UF, the “Fermi energy”, 

where an electron in the stellar matter are already occupying the state and block decays producing 

new electrons at that energy. The effect on the distribution (dashed black line) can be seen in Figure 

1.2, where I have set UF = 1.6 MeV for illustration. Only the area under the resulting green curve 

can now contribute to the total probability of decay. The width of this “filtered” distribution is 

controlled by the temperature of the stellar matter and its average energy kT. 

The coulomb correction G(w,±Z) is given by the equation  

𝐺(𝑤, ±𝑍) ≡ (
𝑝

𝑤⁄ )𝐹(𝑤, ±𝑍)                                               (17) 
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where the relativistic Coulomb barrier term F(w,±Z), contains the complex gamma function as 

𝐹(𝑤, ±𝑍) ≈ 2(1 + 𝑠)(2𝑝𝑅)2(𝑠−1)ⅇ𝜋𝜂 |
𝛤(𝑠+𝑖𝑅)

𝛤(2𝑠+1)
|                                (18) 

However, the additional shape change contributed by this modification to the distribution P(w,q) is 

relatively small compared to that of (1 – S-). Once G(w,±Z) is introduced the integrand of fij mainly 

increases in amplitude and is only slightly skewed as seen comparing Figure 1.2 and Figure 1.3. The 

total probability of a decay is now determined by the area under the solid black curve seen in Figure 

1.3. 

 

Figure 1.2: The display of the phase space integral without the coulomb correction. 
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Figure 1.3: Inclusion of the coulomb correction. 

 

To perform the integration faster, a concept for the reverse process of electron capture was 

suggested by A.D. Becerril-Reyes, S. S. Gupta, et al., where an effective decay rate energy weff term 

would be found (Becerril-Reyes, 2006), but this was never put into practice. Because of the now 

effective decay energy, G(w,±Z) becomes G(weff,±Z) and is treated as a constant, which can be pulled 

out of the integrand saving some amount of CPU computing time. Figures1.2 and Figure1.3 displays 

the difference between when the G(w,±Z) is and is not included in the integrand. The effective decay 

energy weff is determined by finding the average value of the Pauli blocked energy distribution (green 

curves) in Figure 1.2 and Figure 1.4. The integral of interest, the solid black curve in Figure 1.3 and 

Figure 1.4 is then approximately found by integrating the green curve and multiplying the result by 

the constant Geff. 
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Figure 1.4:Here, the scaling factor is emphasized by weff. 

To find weff, let the average value of P(w,q) be <P(w,q)> weighted by the term containing the 

Fermi-Dirac distribution (1 – S-)  

< 𝑃(𝑤, 𝑞) >=
∫ 𝑃(𝑤,𝑞)(1−𝑆−) ⅆ𝑤

𝑞𝑛
1

∫ (1−𝑆−) ⅆ𝑤
𝑞𝑛

1

                                        (19) 

Let the average value <P(w,q)> coincide with the effective decay energy such that 

< 𝑃(𝑤, 𝑞) >= 𝑤𝑒𝑓𝑓
2 (𝑞𝑛 −𝑤𝑒𝑓𝑓)

2
                                        (20) 

Setting these two equations equal to each other gives a quartic equation in weff, but one that is 

already in a reduced form so that it is equivalent to solving a quadratic equation. There are then four 

roots, but only  

𝑤𝑒𝑓𝑓 =
−𝑞−√𝑞2−4√<𝑃>

−2
                                                 (21) 
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provides a real (non-imaginary) value that doesn’t fall in the energy forbidden region outside 1 < w < 

q. 

III. RESULTS 

A histogram in Figure 4 was created to display the speed up factor and accuracy of performing 

the integration with the effective Coulomb correction Geff over that of leaving the full functional 

form G(w, Z) in the integrand (Anderson, 2017). The calculations for the plot were done over a 

total of 12,000 cases, spread over a grid with ranges listed as follows: total decay energy q from 2 to 

50 (larger than any real beat decay), the nuclear charge Z from 10 to 120 in steps of 10, the Fermi 

energy of continuum electrons in the stellar material UF from 1 to 200 MeV (corresponding to white 

dwarf star up to neutron star matter densities, respectively), and the temperature T from 0.01 to 10 

billion Kelvins. The corners of the 2D distribution in Figure 1.5 reveal the worst-case and best-case 

performance for the approximation. The top right corner shows the best-case, where the 

approximate and exact integrations are essentially equal, but the approximation is 20x faster. The 

lower left corner shows the worst-case, where the approximate approach underestimates the exact 

integral by about 50% and is only 18x times faster. 
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Figure 1.5: The distribution shown by cases per pixel over 12000 cases, spread over astrophysically relevant ranges 

of temperature, density, nuclear charge and total decay energy. 

IV. CONCLUSIONS 

In conclusion, the approximate approach for phase space integrations for beta-decay rates 

under electron-degenerate astrophysical conditions was defined and examined in detail. The 

approach assigns an effective decay energy weff and an associated effective Coulomb correction Geff. 

The results showed that the worst-case scenario is that it has at most 50% error, but is still 18x 

faster. The best-case scenario is close to a one to one ratio and around 20x faster. Absolute values of 

beta decay rates in the stellar environment can range over intervals that are dozens, even hundreds 

of orders-of-magnitude wide, so a worst case error of 50% is certainly an acceptable sacrifice in 

exchange for performing the calculation 18-20x times faster. Since the effective procedure is quick 

and accurate to calculate the emission rate for electrons, it could also be useful to develop the same 

approach conceptually to calculate rates for positron and neutrino emissions and captures. Future 

work would involve solving the calculations for the weak rates of these related processes. 
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